skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Farivarnejad, Hamed"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In this paper, we propose a controller that stabilizes a holonomic robot with single-integrator dynamics to a target position in a bounded domain, while preventing collisions with convex obstacles. We assume that the robot can measure its own position and heading in a global coordinate frame, as well as its relative position vector to the closest point on each obstacle in its sensing range. The robot has no information about the locations and shapes of the obstacles. We define regions around the boundaries of the obstacles and the domain within which the robot can sense these boundaries, and we associate each region with a virtual potential field that we call a local navigation-like function (NLF), which is only a function of the robot’s position and its distance from the corresponding boundary. We also define an NLF for the remaining free space of the domain, and we identify the critical points of the NLFs. Then, we propose a switching control law that drives the robot along the negative gradient of the NLF for the obstacle that is currently closest, or the NLF for the remaining free space if no obstacle is detected. We derive a conservative upper bound on the tunable parameter of the NLFs that guarantees the absence of locally stable equilibrium points, which can trap the robot, if the obstacles’ boundaries satisfy a minimum curvature condition. We also analyze the convergence and collision avoidance properties of the switching control law and, using a Lyapunov argument, prove that the robot safely navigates around the obstacles and converges asymptotically to the target position. We validate our analytical results for domains with different obstacle configurations by implementing the controller in both numerical simulations and physical experiments with a nonholonomic mobile robot. 
    more » « less
  2. One potential application of multirobot systems is collective transport, a task in which multiple robots collaboratively move a payload that is too large or heavy for a single robot. In this review, we highlight a variety of control strategies for collective transport that have been developed over the past three decades. We characterize the problem scenarios that have been addressed in terms of the control objective, the robot platform and its interaction with the payload, and the robots’ capabilities and information about the payload and environment. We categorize the control strategies according to whether their sensing, computation, and communication functions are performed by a centralized supervisor or specialized robot or autonomously by the robots. We provide an overview of progress toward control strategies that can be implemented on robots with expanded autonomous functionality in uncertain environments using limited information, and we suggest directions for future work on developing such controllers. 
    more » « less